Name:				
Reg. No.:				

END TERM EXAMINATION - November/December-2022/January-2023

(B.Tech. CSE/ME/CE/EEE)

Subject Code: 21AS301 Subject: Engineering Mathematics - III

Duration: 3 hours Max. Marks: 100

Instructions

All Questions are compulsory

- The Question paper consists of 2 sections Part A contains 10 questions of 2 marks each. Part B consists of 5 questions of 16 marks each.
- There is no overall choice. Only Part B question include internal choice.

PART - A

(2 * 10 = 20 Marks)

- 1. Form partial differential equation by eliminating the arbitrary constants a, b from $z = (x^2 + a^2)(y^2 + b^2)$.
- 2. Solve the equation $(D^2 2DD^2 + D_1^2)Z = 0$.
- **4.** Find the function f(x) whose sine transform is e^{-ax} , $a \ge 0$.
- 5. Solve $(D^3 2D^2D^1)z = 0$.
- 6. Write the one dimensional heat flow equation in steady state.
- 7. Find $Z\{5^k\}, k \ge 0$

8. Find the Z-transform of unit impulse function.

9. Examine the L.I. or L.D. of the set of vectors

$$\{(1,2,3), (3,-2,1), (1,-6,-5)\}$$
 in $V_3(R)$.

10. For given T(x, y, z) = (2x - 3y, 7y + 2z) and S(x, y, z) = (x - z, y) write matrix associated with S + T.

$$PART - B$$

$$(16 * 5 = 80 Marks)$$

11.0) Find the Complex Fourier transform of $f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$

that $\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^3} \cos(\frac{s}{2}) ds = \frac{3\pi}{16}$ hence $\int_{0}^{\infty} \left[\frac{\sin s - s \cos s}{s^3} \right]^2 ds = \frac{\pi}{15}.$

OR

2. Solve the equation $(D^2 - 2DD^2 + D_1^2)Z = 0$. 3. State the Parseval's identity on Fourier transforms. Fig. 2. Solve the Fourier transform of $f(x) = \begin{cases} 1, & \text{if } |x| \le 1 \\ 0, & \text{if } |x| > 1 \end{cases}$

And hence show that $\int_{0}^{\infty} \frac{\sin \theta}{\theta} d\theta = \frac{\pi}{2}$ and $\int_{0}^{\infty} \frac{\sin^2 x}{x} dx = \frac{\pi}{2}$.

12.(i) Solve $(D^3 - 7DD^1 - 6D^{13})z = x^2 y + \sin(x + 2y)$.

(ii) Solve $(D^2 - DD' + D'^2)z = 2x + 3y$.

OR

(i) Solve $(D^2 - 2DD^1)z = x^3y + e^{2x}$

(ii) Solve $(D^3 - 7DD^{12} - 6D^{13})z = e^{2x+y}$

13a) A uniform elastic string of length 60 cms is stretched and fastened at the ends and the initial displacement is $60x - x^2$ while the initial velocity is zero. Find the displacement function y(x, t).

OR

b) Solve the boundary value problem $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions

$$u(0, t) = 0 \quad \text{for } t \ge 0,$$

$$u(l, t) = 0 \quad \text{for } t \ge 0$$

$$u(x, 0) = \sin\left(\frac{\pi x}{l}\right).$$

14.(i) Solve the difference equation by using Z-Transforms

$$6y_{k+2} - y_{k+1} - y_k = 0, y(0) = 0, y(1) = 0$$

(ii) Find the Z-Transforms of $\left\{ \left(\frac{1}{2}\right)^{|k|} \right\}$

OR

Find the inverse Z-Transform of $\frac{1}{(z-a)(z-b)}$; a < b

(i) |z| < a (ii) a < |z| < b (iii) |z| > b.

15. (i) Show that the function $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (x_1, x_2, 0)$ is a linear transformation.

(ii) Show that the function $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (x,x-y,x+y) is a linear transformation and is One to one but not onto.

OR

Show that the set V of all real valued continuous functions of x defined on [0,1] is a vector space over the field R of real numbers w.r.t pointwise vector addition and scalar multiplication defined by:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) \forall f_1, f_2 \in V;$$

 $(af_1)(x) = af_1(x) \forall a \in R, f_1 \in V.$